FrançaisEnglish

XYLOBIOTECH publications
Trontin et al. (2016-2017) - Oral scientific presentation - Somatic embryogenesis and reverse genetics in maritime pine

 

Somatic embryogenesis as an enabling technology for reverse genetics: achievements and prospects for breeding maritime pine (Pinus pinaster Ait.).

Fourth international conference of the IUFRO unit 2.09.02 (somatic embryogenesis and other vegetative propagation technologies) on “Development and application of vegetative propagation technologies in plantation forestry to cope with a changing climate and environment”, September 19-23, 2016 (La Plata, Argentina).

In BONGA J.M., PARK Y.S., TRONTIN J.-F. (eds), Proceedings of the 4th international conference of the IUFRO unit 2.09.02 (somatic embryogenesis and other vegetative propagation technologies) on “Development and application of vegetative propagation technologies in plantation forestry to cope with a changing climate and environment”, September 19-23, 2016 (La Plata, Argentina), pp.338.

Link to the Conference Proceedings published online July 2017

Trontin JF, Ávila C, Debille S, Teyssier C, Canlet F, Rueda-López M, Canales J, De la Torre F, El-Azaz J, Pascual B, Caňas R, Boizot N, Le Metté C, Lesage-Descauses MC, Abarca D, Carneros E, Rupps A, Hassani SB, Zoglauer K, Arrillaga I, Mendoza-Poudereux I, Cano M, Segura J, Miguel C, De Vega-Bartol J, Tonelli M, Rodrigues A, Label P, Le Provost G, Plomion C, da Silva Perez D, Harvengt L, Díaz-Sala C, Cánovas FM, Lelu-Walter MA

Collaboration FCBA Pierroton (France), Univ. Málaga (Spain), INRA Orléans (France), Univ. Alcalá (Spain), Univ. Humboldt Berlin (Germany), Univ. Valencia (Spain), iBET/ITQB/Univ. Lisboa (Portugal), INRA Clermont/Univ. Blaise Pascal (France), INRA Pierroton/Univ. Bordeaux (France), FCBA/IntechFibres Grenoble (France)

Abstract

As a major pine species with great ecological and socio-economic interests in Southern Europe, various approaches are concurrently developed in Pinus pinaster towards enhanced selection efficiency and deployment of improved, better-adapted varieties. Strong synergies are expected between traditional breeding, DNA-based selection (especially genomic selection) and somatic embryogenesis (SE) as a scalable vegetative propagation method of tested varieties for implementing multivarietal forestry. SE has been shown for more than 15 years to be an effective support for stable Agrobacterium-mediated genetic modification of selected genotypes (FCBA, INRA and iBET developments). Validating marker associations with specific properties before transfer into breeding selection models is still challenging. We developed reverse genetic studies (French and multinational/European initiatives) aiming at establishing direct associations between gene expression (including transcription factor genes) and adaptively significant phenotypes through overexpression or loss-of-function strategies such as RNAi. Data accumulated for various genes involved in wood formation, carbon and nitrogen metabolisms, stress resistance, embryogenesis and plant development. Based on this collective effort, we will highlight some major achievements, discuss weaknesses of current technology and new opportunities.

Key words: genetic modification, Agrobacterium, transgene, transcriptomics, proteomics, off-target effect

Last update Thursday 05 October 2017


TOP